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Flow separation in a 
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The flow in a rotating annular cylinder, of finite depth, is examined when the Rossby 
number Ro is O(Ei) ,  where E is the Ekman number, and when there is a topography 
of height O(Eg) on the base of the container. The flow, relative to the rigid axial 
rotation, is forced by differential rotation of the lid and as it moves over the 
topography the streamlines are deflected parallel to the bottom surface. This induces 
O(1) velocity variations near the axial walls of the annulus to which the boundary 
layers there, of thickness O(Ea), respond. For sufficiently large values of a parameter 
A K RoIEB the skin friction can vanish within these layers, with some similaritits to 
boundary-layer separation in a non-rotating fluid. In  this study the interior flow, with 
horizontal viscous diffusion neglected, is calculated and used to provide a boundary 
condition for the ,?d layer flow. Once h exceeds a finite critical value a singularity is 
encountered in the boundary layer corresponding to  flow separation from the wall. 
This demonstrates that  E! layers in a rotating fluid, which for Ro = 0 have little direct 
influence on the interior flow, can modify the gross properties of the flow for non-zero 
Rossby numbers, a conclusion also reached by Walker & Stewartson (1972) in a 
different context . 

1. Introduction 
In this paper the flow of a rotating fluid of finite depth a t  low Rossby number will 

be examined with particular emphasis on the conditions under which the sidewall 
boundary layer, of thickness O(E)) ,  where E is the Ekman number, can separate from 
the wall, thereby altering the 0(1)  dynamics of the flow. The particular parameter 
regime of interest is when the Rossby number Ro is O(E?), which is the same as that 
st'udied by Walker & Stewartson (1972) for flow around a circular cylinder bounded 

' axially by two infinite plates. I n  their study i t  is shown that for RoIEt sufficiently 
large the boundary layer can separate from the cylinder as the flow decelerates on 
the downstream side. This is in marked contrast with the constant displacement 
thickness of the flow for Ro = 0, for which the boundary-layer solution can be 
calculated exactly. 

A difficulty with the circular cylindrical geometry is that  a singularity develops 
at  the rear stagnation point at a lower value of RoIE; than that for which separation 
first occurs. I n  the present study this difficulty is averted by examining a flow within 
an annular container, driven by differential rotation of the lid. This enables a clearer 
view to be obtained of the development of flow separation in the Ei layer. Variations 
in the flow at the sidewall are induced by a small topography, of height O(Ej ) ,  on 
the base of the container. The effect of such topography on a low Rossby number 
flow was examined theoretically and experimentally by Boyer (1971) who showed 
that the flow moving across a long narrow ridge was deflected a distance O(h/E:) along 
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the ridge as i t  crossed the obstruction. These results are extended in Huppert & Stern 
(1974) to include the effects of sidewalls, although Ej  layers are not considered. The 
influence of sidewall boundary layers is also neglected by Davey (1978) in his study 
of the flow in an annular container, identical with that considered here. His results 
concentrate on three parameter regimes, each of which enables the flow equations 
to be simplified. He also restricts attention to topographies that are independent of 
radial distance from the cylinder axis, and, for simplicity, a similar assumption will 
be made here. 

When the E: layer is studied in this configuration i t  is found that once the ratio 
RoIE? exceeds a critical value the boundary layer develops a singularity a t  a position 
where the external flow is decelerating. This singularity is similar to that examined 
by Goldstein (1948) for a separating flow in a non-rotating fluid. Furthermore, using 
a condition derived by Buckmaster (1969) for a related problem in magnetohydro- 
dynamics, a reasonable estimate for the critical value of RoIEB can be obtained with- 
out the need for detailed study of the boundary-layer flow. Since the equations for 
the interior flow, away from the boundary layers, are nonlinear when Ro is O(E4) they 
must, in general, be solved numerically, and the boundary-layer flow, also obtained 
numerically, must be matched onto the interior flow. Sufficient resolution is available 
to demonstrate clearly that the E: layer may separate from the wall. This implies 
that when a low-Rossby-number flow, with Ro + 0, is calculated proper account 
should be taken of the finite thickness of the boundary layer, as is usual in a 
non-rotating fluid. An example of this is given in Page (1982), where the flows in the 
interior and Ef-layers are calculated together for a small, but finite, value of E. I n  
that case no singularities are encountered in the boundary layer, indicating that the 
interior flow adjusts under the influence of the E; layer flow. 

The annular geometry studied here enables comparisons to  be made with previous 
theoretical (Davey 1978) and experimental (Maxworthy 1977) work on this config- 
uration. However, unlike in those investigations, a smooth topography extending fully 
around the container will be used here to demonstrate that the obstacle need not be 
localized nor must i t  have discontinuous slope for separation to occur. If the flow 
separates for a smooth topography then i t  would certainly be expected to  separate 
when either of the above features leads to larger velocity gradients in the flow against 
the wall. The smooth topography also enables better numerical resolution of the 
phenomenon. 

The governing equations for the interior flow in an annular container are derived 
in $2 and numerical results for this flow are presented in $3. The trends in the interior 
flow as RolEt and the topography height vary are examined, and in particular it is 
shown that reversed-flow regions can occur in the interior flow without boundary-layer 
separation. The Ei layer effects are studied in $4, where the governing equations are 
derived and a necessary condition for viscous separation to occur is calculated. The 
parameters for which flow separation, whether in the interior flow or due to 
boundary-layer effects, are also given in $4 for a particular form of topography. 

2. Formulation 
The flows considered are those of an incompressible fluid, of constant density p* 

and kinematic viscosity v*, contained in an annulus, rotating a t  a uniform angular 
velocity a*. The inner radius of the container is 1*, the outer radius bl*(b > 1) and 
the average depth dl*. On the base there is a topographical feature of small height 
A * ,  varying in the azimuthal direction but independent of the radial distance from 
the cylinder axis. Motion in the fluid, relative to a frame rotating with thc container, 
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FIGURE 1 .  The geometrical configuration relative to a frame rotating with angular velocity R* ; the 
fluid is contained in the annular cylinder with radii I * ,  bl* and forced over the topography h* by 
differential rotation of the lid. 

is forced by rotating the lid with an excess angular velocity e n * .  This configuration 
is illustrated in figure 1. 

The Ekman number E,  based on the lengthscale 1*, is defined as 

U* 
Q*l*' 

and the Rossby number Ro is 
Ro = -- 

where U* = el*Q* is a typical velocity scale. The latter simplifies to Ro = E ,  which 
in this study is taken to be O(E4). The bottom topography, when scaled by 1*,  is 

h* h = -  
I*' 

and this is also considered to be O(E4). 

are given by 
The non-dimensional coordinates, velocities and time defined in a Cartesian frame 

(2.4) x = x"/ l* ,  u = u*/lT*, t = n*t*, 
where x = (x, y, z )  are coordinates measured relative to a frame rotating with the 
container, and z is aligned with k. In  terms of these variables the Navier-Stokes 
equations for a steady flow are 

R o ( u . V ) U + ~ ( ~ X U )  = -VP+EV2u, 

v . u  = 0, 
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where P is the reduced pressure 

P* = p*-gp*n*2(x* x k)2, (2.7) 

scaled by p*sZ*U*l*. The boundary conditions on the motion are 

u = O  on r =  1 , b  and z =  h ( 8 ) ,  (2.8) 

u = r b  on z = d ,  (2.9) 

where ( r ,  8, z )  are cylindrical polar coordinates. 
For E 4 1 the solution of (2 .5)  can be expanded in powers of h'i, and the leading-order 

terms must then satisfy 
2(k x u,) = -VP,, (2.10) 

so the flow, to this order, follows lines of constant pressure. A further consequence 
of (2.10) is that  Po, and hence u,, is depth-independent. Therefore a stream function 
$(r ,  6 )  can be defined from which the horizontal velocity components in polar 
coordinates 

(2.1 I )  

can be calculated. To determine $ i t  is necessary to consider higher-order terms in 
( 2 . 5 ) ,  and this is most easily done by eliminating Pfrom the (x, y)-components of (2 .5) .  
The resulting equation for the z-component of the vorticity, 

5 = V?$. (2.12) 

where V; is the two-dimensional Laplacian, is, to lowest order, 

(2.13) 

where J is the two-dimensional Jacobian and, since w is zero to leading order, we 
have written Z L ~  = E*w,+O(E). To determine ujl the Ekman layers at z = h, d must 
be considered, and an analysis of these leads to the compatibility conditions 
(Greenspan 1968) 

w1 = $ ( 2 - 5 )  on z =  d ,  (2.14) 

on Z =  h .  (2.15) 

Since I+@, 5 depend on ( r ,  8) only dw,/dz is independent of z ,  from (2.13), and can be 
evaluated from (2.14), (2.15) as 

" 1 = ' [ 1 - - 5 - - J ( $ . i ) ] ,  d z  d 

t,o lowest order. Substitut'ing this int'o (2.13) gives 

where 

(2.16) 

(2.17) 

(2.18) 

which is a quantity of order unity since Ro is O(E4). The solution of (2.12) and (2.17) 
will be known as the interior flow, and the boundary conditions are 

$.(l.@ = 0, $ ( b , @ )  = Q ,  (2.19) 
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where Q is an undetermined constant. The indeterminateness arises because, for a 
given value of c, an arbitrary multiple of 

$ ,= lnr  (2.20) 

can be added to a solution of (2.12). This non-uniqueness can be resolved by 
considering O(E4) terms in the flow, as done by Davey (1978), leading to the condition 

f 2 n  

which fixes the value of Q .  
A second parameter of interest in this study, where h = h(0) is O(E!), is 

(2.21) 

(2.22) 

which measures the relative importance of the topographic term in (2.17) 

3. Interior-flow results 
The interior-flow problem has been studied previously by Davey (1978), where 

three parameter regimes, for which (2.17) can be simplified, were examined in detail. 
Firstly, when a: 4 (1 + h2)4 the flow is a small perturbation upon the axisymmetric 
flow vo = and the vorticity equation can be linearized. Secondly, for h = 0 the 
problem is linear and cis given explicitly in terms of $. Finally, for h S 1 and a = O(h) 
the right-hand side of (2.17) is relatively small so that hc+h/@ is approximately 
constant along streamlines. These three regimes do not, however, cover all possible 
values of ( A ,  a) and they have the disadvantage of being disjoint so that trends in 
h or a are not easy to establish. 

Exact solutions are difficult to obtain, even in Davey’s simplified regimes, so a full 
numerical method has been sought that could be used uniformly for 0(1) values of 
h and a. The numerical scheme is iterative with an alternating-direction iteration 
used to solve (2.17) a t  each step. Having found 5 for that  step the stream function 
was calculated by solving (2.12), subject to (2.19) and (2.21), and the whole process 
was repeated until the solution had converged. 

For reasons outlined earlier a simple, smooth topography is used in this study, 
namely h = aE4 sin 8. 

Numerical solutions were calculated with this form of h, for a wide range of a and 
A,  using centred finite differences with 40 radial grid points and 64 azimuthal points. 
These solutions converge to 0.1 yo accuracy in 10-20 iterations and are not affected 
significantly by increasing the number of grid points. Further details are given in Page 
(1981). 

Before examining the boundary-layer flow, which is the main purpose of this paper, 
some general trends in the interior flow will be outlined. These show why boundary- 
layer separation can occur and aid in determining when it can be expected. 

I n  figure 2 the flow for zero Rossby number, b = 2 and various values of a is 
illustrated, showing the displacement of the streamlines as the height of the 
topography is increased; for an observer moving with the flow this displacement is 
to the left as the fluid moves uphill and to the right as i t  moves downhill. This is 
consistent with the theory of Huppert & Stern (1974) and the flows shown in Davey 
(1978). A consequence of this property is that the slip velocity on each wall has a 
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FIGURE 2. Streamline plots for the flow when Ro = 0, b = 2 and with the topography 
(3.1) for (a)  a = 0, ( b )  2, ( c )  4, (d) 8. 

variation, about its mean value or +b, which increases with a. As a result the velocity 
gradient r-l dv,,/dO also increases with a. This is demonstrated in figure 3, where the 
velocity against the inner wall is plotted for each of the flows in figure 2. These figures 
also show that for a larger than a critical value, between 2 and 4, there is a region 
of flow reversal in the interior. This separation of the flow from the wall is not due 
to viscous effects in the sidewalls since these are not included in this solution. Similar 
reversed-flow regions are also shown in Davey (1978) for a slightly different 
topography. 

Keeping the height of the topography fixed, a t  a = 2, and increasing A results in 
the variation of slip velocities at each wall, as shown in figure 4. The positions of the 
velocity extrema are displaced downstream by an amount that increases with A,  and 
as this occurs the magnitude of the velocity variation decreases. I n  fact for a = O( 1 )  
and A % 1 an asymptotic solution of (2.17) can be calculated, when h is given by (3.1), 
since 6 = 1 -ah-' sin B + O(A--%) (3.2) 
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FIGURE 3. Interior-flow velocities against the inner wall, r = 1, for each plot shown in figure 2. 
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FIGURE 4. Interior-flow velocities against both walls for a = 2 ,  b = 2 and various values of A :  -, 
inner wall; -.-, outer wall. 

in that  case. This can be solved easily to give the velocity variations on the inner 
wall as 

1 a(2b+ 1 )  (b- 1 )  
v o ( i ,  6 )  = -+ 2 3 A ( b + l )  sin 6.  (3.3) 

Therefore as A -+ cg the velocity variations are O(h-') and the position of the extrema 
coincide with those of h, a change in azimuth of in from the positions of the extrema 
for A = 0 which were a t  the maxima of Idhldel. Another important feature shown in 
figure 4 is that the maximum value of avo/ d6  is slightly larger on the inner wall than 
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on the outer and therefore the velocity gradient r-l dz+,/d0 is significantly larger for 
r = 1 than for r = b.  

4. Boundary-layer flow 
The interior flow developed in $2 is required to satisfy u = 0 on r = 1, b but it will 

not, in general, satisfy thc no-slip condition v = 0 on both walls, as required by (2.8). 
For rotating fluid with zero Rossby number the tangential velocity adjusts to this 
value across a thin boundary layer of thickness O(Ei) (Stewartson 1957) and a simple 
exact solution is available for the flow in this layer. From this solution i t  is apparent 
t,hat for Ro = 0 the boundary layer has no 0(1) influence on the interior flow, since 
the displacement thickness is constant at 6 = (MEt)i. Stewartson also examines a 
thinner layer of thickness O(Eh), across which the vertical velocity adjusts to  w = 0, 
but in this study the effect of this layer will be neglected. This can be justified because 
the velocities in the Ej layer are small. 

Walker & Stewartson (1972, 1974) examine the Ei layer for non-zero Rossby 
numbers of O(E4) in a rotating flow comparable to that studied here, and conclude 
that for RolEt larger than a critical value the boundary layer can separate from the 
wall, thereby leading to a modification of the interior flow. I n  their study Walker 
& Stewartson refer to an equivalent problem in magnetohydrodynamics (Leibovich 
1967 ; Buckmaster 1969,1971) for which a necessary Condition for separation to occur 
was derived. With the notation of $3  this condition is 

where r = 1 or r = b,  and vo is the velocity of the interior flow tangential to  the wall. 
A derivation of (4.1) will be outlined below, once the governing equations for the flow 
in the Ea layer have been derived. 

The results presented in $3  indicate that, for the topography given by (3.1), the 
velocity gradients are larger on the inner wall, and therefore the condition (4.1) is 
satisfied on the inner wall a t  a smaller value of h than on the outer wall. Hence, i t  
is sufficient to examine only the boundary layer on r = 1. 

In  this layer r -  1 is 0(6), the tangential velocity is 0(1) and the vorticity [is O(6-l). 
As in the interior flow, the geostrophic equation (2.9) is satisfied to lowest order and 
therefore a scaled stream function $ ( P ,  0) can be defined in terms of?  = ( r -  l)/S such 
that 

The vorticity to lowest order is, from (2.12), 

and, from (2.5), (2.14), (2.15) and (4.2), i t  is governed by the equation 

This equation can be integrated once to  give 

(4.4) 

(4.5) 
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FIQURE 5. Plot of ( A ,  a) parameter space for b = 2 showing the parameters for which interior 
reversed flow occurs, bounded by -.-, and the values of a,, ac. 

which, apart from the term B e - @ ,  is similar to the boundary-layer equation in a 
non-rotating fluid. The boundary conditions for (4.5) are B --f f i e  = wo( 1 ,  8)  as P -+ 00, 

u = B = 0 on P = 0, together with a periodicity condition in 8. 
The condition (4.1) on a flow with viscous separation follows directly from (4.5) 

evaluated on P = 0 since, as in the non-rotating theory, if boundary-layer separation 
occurs a t  8 = Os then a28(0, 0,)/aP2 2 0. It follows from the trends in the interior flow, 
observed in $3, that  for a fixed there is a minimum value of h at which separation 
can occur, given by 

where U e ,  dependent on the parameters ( A ,  a ) ,  is evaluated at (A,, a) .  Alternatively, 
there is a minimum topographic height, a,(h), and this is shown on figure 5, as 
calculated from the numerical solutions for the interior flow. For h $- 1 and b = 2 the 
asymptotic solution (3.3) implies that  a, --f 1.8 as h --f 00, in agreement with the 
numerical solution. 

Figure 5 also shows the parameter range for which there is a region of reversed 
flow in the annulus, due solely to interior flow separation. For h less than approx- 
imately 1-5 reversed flow appears in the interior solution for topography smaller than 
that for which viscous separation can occur. Therefore for low values of A flow reversal 
need not be due to boundary-layer effects. However, for larger values of h there is 
the possibility that  the flow separates, owing to viscous effects in the Ei layers, at 
a lower value of a than that indicated by the interior solutions. 

To determine the flow in the boundary layer (4.5) was integrated using the 
numerical values t i o (  1,  8) from the interior solution. The numerical scheme used was 
the ‘box method’ (Keller & Cebeci 1971), as used by Crissali & Walker (1976) for the 
Walker & Stewartson problem, with a stretched grid containing 70 points in the f 
direction. The marching process was initiated from a minimum of wo( 1, O),  where the 
profile could be estimated, and, provided the flow did not separate, it  could be shown 
that the boundary-layer solution was periodic. However, this technique prevents the 
boundary-layer flow from being calculated when there is reversed flow in the interior, 
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FIQURE 6. The displacement thickness S* of the boundary layer on the portion of the wall 4. < 6 < 7~ 

when a = 2.2, b = 2 and for various values of A .  

since ge is negative at its minimum. The calculations when no interior reversed flow 
is present show that once a exceeds a value a, 2 a, the skin friction vanishes and 
the Ei  layer solution cannot be continued for 8 > BS. Furthermore, since the velocity 
variations of the interior flow on r = 1 increase with a, boundary-layer separation 
can be expected for all a > a,, including the case where a is large enough for reversed 
flow to be present in the interior. The values of a,, calculated by a bisection method, 
are shown on figure 5 ,  and for A large they are only slightly larger than a,. For smaller 
values o f h ,  with f i e  > 0 for all 6, the values of a, and a, appear to coincide, indicating 
that a, x a, in the interior reversed-flow region. If a > a, in this region then viscous 
effects can be expected to  modify the existing reversed flow. 

In  figure 6 the displacement thickness S* is plotted for a fixed a t  2-2, b = 2 and 
increasing values of A. For h = 0 the displacement thickness is S* = 1 ,  as expected 
from the exact solution, but when h > 0 the boundary layer thickens as the external 
flow tie decelerates. For A between 2.5 and 2.6 the skin friction vanishes in this region, 
leading to  flow separation. However, even for A = 2.5, when viscous separation has 
not occurred, the interior solution for any flow with E =k 0 will be affected by the 
large displacement thickness 6* > 10 unless the Ekman number is very small. 

The results of this study can be compared, a t  least qualitatively, with the 
experiments performed by Maxworthy (1977). These flows effectively involve an 
additional parameter, the obstacle width, but they do consistently show the presence 
of flow separation. I n  all of the photographs shown in that paper the values of a, 
as defined by (2.22). are large and the values of A,  R,/Eb in his notation, vary from 
0-58 to 956. Clearly the results presented for the topography (3.1) are not directly 
applicable to  these experiments, although, since the flows show trends with a and A 
similar to those observed in $3,  the general features are alike. I n  particular, for the 
cases where A > 2 the maximum streamline displacement, as the flow crosses the 
obstruction, is close to the point where h is maximum. This property is similar to 
that observed in Davey's third regime, for a, A both large, and therefore if the flow 
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separation in Maxworthy’s photographs is not due to  viscous effects then the entire 
flow would be expected to be symmetric. This does not, however, appear to be the 
case, supporting the argument that the Ei layer has separated from the inner wall. 
Therefore care is necessary when comparing the results of these experiments with 
those from the interior-flow calculations, in which the effects of the sidewall boundary 
layers are neglected. Moreover, the possibility of E i  layer separation should be 
considered in any configuration where the interior flow decelerates on a sidewall and 
the Rossby number is O(E:). 

The author gratefully acknowledges the assistance provided by Professor L. M. 
Hocking, who suggested the topic and aided in the development of this paper. The 
research was completed while the author was at University College London, 
supported by a Commonwealth Scholarship. 
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